Soliton solutions and their degenerations in the (2+1)-dimensional Hirota–Satsuma–Ito equations with time-dependent linear phase speed
نویسندگان
چکیده
This paper focuses on the exact soliton solutions of (2+1)-dimensional generalized Hirota–Satsuma–Ito equations with time-dependent linear phase speed. Based Painlevé integrability test this equation, condition is determined. Then general N-soliton are constructed by Hirota bilinear method. Not only expressions and their degenerations, but also spatial structures presented for different choices parameters, including line soliton, periodic lump interaction forms.
منابع مشابه
Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients
In this paper, Whitham–Broer–Kaup (WBK) equations with time-dependent coefficients are exactly solved through Hirota’s bilinear method. To be specific, the WBK equations are first reduced into a system of variable-coefficient Ablowitz–Kaup– Newell–Segur (AKNS) equations. With the help of the AKNS equations, bilinear forms of the WBK equations are then given. Based on a special case of the bilin...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملThe (2+1) and (3+1)-Dimensional CBS Equations: Multiple Soliton Solutions and Multiple Singular Soliton Solutions
In this work, the generalized (2+1) and (3+1)-dimensional Calogero-Bogoyavlenskii-Schiff equations are studied. We employ the Cole-Hopf transformation and the Hirota bilinear method to derive multiple-soliton solutions and multiple singular soliton solutions for these equations. The necessary conditions for complete integrability of each equation are derived.
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2023
ISSN: ['1573-269X', '0924-090X']
DOI: https://doi.org/10.1007/s11071-023-08348-3